
http://www.tuto rialspo int.co m/spring /spring _hello _wo rld_example.htm Copyrig ht © tutorialspoint.com

SPRING HELLO WORLD EXAMPLE

Let us start actual prog ramming with Spring Framework. Before you start writing your first example using
Spring framework, you have to make sure that you have setup your Spring environment properly as explained in
Spring - Environment Setup tutorial. I also assume that you have a little bit working knowledg e with Eclipse IDE.

So let us proceed to write a simple Spring Application which will print "Hello World!" or any other messag e
based on the config uration done in Spring Beans Config uration file.

Step 1 - Create Java Project:

The first step is to create a simple Java Project using Eclipse IDE. Follow the option File -> New -> Project
and finally select Java Project wizard from the wizard list. Now name your project as HelloSpring using the
wizard window as follows:

Once your project is created successfully, you will have following content in your Project Explorer:

http://www.tutorialspoint.com/spring/spring_hello_world_example.htm
/spring/spring_environment_setup.htm

Step 2 - Add Required Libraries:

As a second step let us add Spring Framework and common log g ing API libraries in our project. To do this,
rig ht click on your project name HelloSpring and then follow the following option available in context menu:
Build Path -> Config ure Build Path to display the Java Build Path window as follows:

Now use Add External JARs button available under Libraries tab to add the following core JARs from
Spring Framework and Common Log g ing installation directories:

antlr-runtime-3.0.1

org .spring framework.aop-3.1.0.M2

org .spring framework.asm-3.1.0.M2

org .spring framework.aspects-3.1.0.M2

org .spring framework.beans-3.1.0.M2

org .spring framework.context.support-3.1.0.M2

org .spring framework.context-3.1.0.M2

org .spring framework.core-3.1.0.M2

org .spring framework.expression-3.1.0.M2

commons-log g ing -1.1.1

Step 3 - Create Source Files:

Now let us create actual source files under the HelloSpring project. First we need to create a packag e called
com.tutorialspoint. To do this, rig ht click on src in packag e explorer section and follow the option : New ->
Packag e.

Next we will create HelloWorld.java and MainApp.java files under the com.tutorialspoint packag e.

Here is the content of HelloWorld.java file:

package com.tutorialspoint;

public class HelloWorld {
 private String message;

 public void setMessage(String message){
 this.message = message;

 }

 public void getMessage(){
 System.out.println("Your Message : " + message);
 }
}

Following is the content of the second file MainApp.java:

package com.tutorialspoint;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class MainApp {
 public static void main(String[] args) {
 ApplicationContext context =
 new ClassPathXmlApplicationContext("Beans.xml");

 HelloWorld obj = (HelloWorld) context.getBean("helloWorld");

 obj.getMessage();
 }
}

There are following two important points to note about the main prog ram:

1. First step is to create application context where we used framework API
ClassPathXmlApplicationContext(). This API loads beans config uration file and eventually based
on the provided API, it takes care of creating and initializing all the objects ie. beans mentioned in the
config uration file.

2. Second step is used to g et required bean using g etBean() method of the created context. This method
uses bean ID to return a g eneric object which finally can be casted to actual object. Once you have object,
you can use this object to call any class method.

Step 4 - Create Bean Config uration File:

You need to create a Bean Config uration file which is an XML file and acts as cement that g lues the beans ie.
classes tog ether. This file needs to be created under the src directory as shown below:

Usually developers keep this file name as Beans.xml, but you are independent to choose any name you like.
You have to make sure that this file is available in CLASSPATH and use the same name in main application while
creating application context as shown in MainApp.java file.

The Beans.xml is used to assig n unique IDs to different beans and to control the creation of objects with different
values without impacting any of the Spring source files. For example, using below file you can pass any value for
"messag e" variable and so you can print different values of messag e without impacting HelloWorld.java and
MainApp.java files. Let us see how it works:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean >
 <property name="message" value="Hello World!"/>
 </bean>

</beans>

When Spring application g ets loaded into the memory, Framework makes use of the above config uration file to
create all the beans defined and assig n them a unique ID as defined in <bean> tag . You can use <property>
tag to pass the values of different variables used at the time of object creation.

Step 5 - Running the Prog ram:

Once you are done with creating source and beans config uration files, you are ready for this step which is
compiling and running your prog ram. To do this, Keep MainApp.Java file tab active and use either Run option
available in the Eclipse IDE or use Ctrl + F11 to compile and run your MainApp application. If everything is
fine with your application, this will print the following messag e in Eclipse IDE's console:

Your Message : Hello World!

Cong ratulations, you have created your first Spring Application successfully. You can see the flexibility of above
Spring application by chang ing the value of "messag e" property and keeping both the source files unchang ed.
Further, let us start doing something more interesting in next few chapters.

	SPRING HELLO WORLD EXAMPLE
	Step 1 - Create Java Project:
	Step 2 - Add Required Libraries:
	Step 3 - Create Source Files:
	Step 4 - Create Bean Configuration File:
	Step 5 - Running the Program:

